The Rolling Bearing Fault Feature Extraction Method Under Variable Conditions Based on Hilbert-Huang Transform and Singular Value Decomposition
نویسندگان
چکیده
The fault diagnosis precision for rolling bearings under variable conditions has always been unsatisfactory. For solving this problem, a feature extraction method combing the Hilbert-Huang transform with singular value decomposition was proposed in this paper. The method includes three steps. Firstly, instantaneous amplitude matrices were obtained by Hilbert-Huang transform from rolling bearing signals. Secondly, as the fault feature vector, the singular value vector was acquired by applying singular value decomposition to the instantaneous amplitude matrices. Thirdly, the identification and classification of rolling bearing were achieved by Elman neural network classifier. The experiment shows that this method can effectively classify the rolling bearing fault modes with high precision under different operating conditions.
منابع مشابه
A Method of Bearing Fault Feature Extraction Based on Improved Wavelet Packet and Hilbert Analysis
In order to supply a gap of current resonance vibration and STFT demodulation method applied to rolling bearing fault feature extraction of city rail vehicle, a fault diagnosis method for rolling bearing is presented, which is based on the integration of improved wavelet packet, frequency energy analysis and Hilbert marginal spectrum. When faults occur in rolling bearing, the energy of the roll...
متن کاملRolling Bearing Failure Feature Extraction Based on Large Parameters Stochastic Resonance ⋆
Based on rolling bearing fault signal modulation model in the process of spreading, an improved method that combining Hilbert envelop extraction algorithm and large parameter setting rules in stochastic resonance (SR) is proposed for features extraction. Firstly, Hilbert transform can effectively eliminate the interference of high frequency carrier signal. Secondly, parameters setting rules in ...
متن کاملFault Diagnosis Method Based on a New Supervised Locally Linear Embedding Algorithm for Rolling Bearing
In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly distributed. Moreover, like other manifold learning algorithms, the ...
متن کاملFeature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy
The randomness and fuzziness that exist in rolling bearings when faults occur result in uncertainty in acquisition signals and reduce the accuracy of signal feature extraction. To solve this problem, this study proposes a new method in which cloud model characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach can overcome the disadvantages of traditional entro...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013